MATTER CONSULTING STRUCTURAL ENGINEERS

MATTER

Level 5/550 Bourke Street Melbourne VIC 3000 (03) 8692 7262

1 Walkerville Terrace, Gilberton SA 5081

Stormwater Management Plan

Project No.: 23084A 5 December 2024 Revision No. 1

REVISION	DATE	COMMENT	AUTHOR	CHECKER
1	05 December 2024	Final	DK	WE

MATTER CONSULTING STRUCTURAL ENGINEERS

MATTER

Level 5/550 Bourke Street Melbourne VIC 3000 (03) 8692 7262

Contents

1.	Inti	roduction	3
1	.1	Site Description	3
1	.2 R	egulatory Requirements	4
2	Pro	pposed Stormwater Management System	5
2	.1	Stormwater Design Parameters	5
2	.2	Legal Point of Discharge (LPD)	7
2	.3	Catchment Areas Breakdown	8
	2.3	.1 Pre-Development Area	8
	2.3	.2 Post- Development Area	9
2	.4	Detention Volume Calculation	. 11
2	.5	Legal Point of Discharge – DRAINS Calculation	. 15
2	.6	Controlled Site Discharge	
	2.6	.1 Drainage Pipe to LPoD	. 19
2	.7	Rainwater Tank	. 20
2	.8	Other treatment devices	. 20
3	Sui	mmary	. 21

1. Introduction

1.1 Site Description

This report relates to the construction of a proposed engineering services for 1 Walkerville Terrace, Gilberton SA 5081, which consists of a 11-level hotel / mixed-use building, consisting of 2 car parking basements 9 floor above ground.

Following additional services are required for the above site. The scope of work required includes the following:

- Assess existing stormwater infrastructure in the vicinity of the subject site.
- Explore treatment initiatives to achieve stormwater pollutant reduction targets.
- This Stormwater Management Plan provides an outline of the proposed design criteria for the development.

Figure 1 - Site Location of the Proposed Development

MATTER CONSULTING STRUCTURAL ENGINEERS

Level 5/550 Bourke Street Melbourne VIC 3000 (03) 8692 7262

1.2 Regulatory Requirements

The following standards and guidance documents were referred to in preparation of the SWMP.

- AS/NZS 3500.3:2018 Plumbing and Drainage Part 3: Stormwater Drainage
- 2023 2033 Stormwater Asset Management Plan- Town of Walkerville
- Adopted November 2023 WSUD Engineering Procedures: Stormwater (CSIRO 2005 EPS)
- MUSIC Modelling Guidelines August 2015
- Bureau of Meteorology for Rainfall Data and IFD Charts

2 Proposed Stormwater Management System

The design approach for the stormwater system of the development will be based on water sensitive urban design (WSUD) principles. The adopted principles for stormwater design will be consistent with Walkerville Council Development Plan. The following items will be considered during the design:

- Provide adequate drainage to ensure a free draining development.
- Pavement levels and drainage design to ensure ponding does not occur on adjacent properties.
- The discharge volume, timing, and velocity of stormwater runoff from the subject site has no adverse effect on any surrounding properties or receiving waters.
- The pollutant discharge from the subject site is minimised so that the environmental value of surrounding properties and receiving water is maintained.
- Major overland flow paths / systems are considered in the design.

2.1 Stormwater Design Parameters

Referring to the Walkerville stormwater catchment, 1 Walkerville Terrace sits within Gilberton area. The subject site location is indicated on the below map from Appendix A of this document using a green cross.

Figure 2 - Stormwater Catchment Area

Permissable Site Discharge

The purpose of the Permissible Site Discharge is to limit the site discharge to a pre-determined rate. The Permissible Site Discharge is calculated as the runoff generated from the pre-developed site during a 20% Annual Exceedance Probability design storm event of 5 minute duration.

The Permissible Site Discharge is calculated using the Rational Method Formula. The value for I is taken from the Bureau of Meteorology for Rainfall Data and IFD Charts, using the coordinates of the subject site.

Permissible Site Discharge (litres/s) =
$$\frac{C_{20} \times I_{20}^{5} \times A}{3600}$$

Where,

 $C_{20} = 20\%$ Annual Exceedance Probability Runoff Coefficient

 $= 0.95 \times [F_{imp} \times 0.9 + (1-F_{imp}) \times 0.143]$
 $F_{imp} = Fraction Impervious for Pre-Developed Site$
 $I_{20}^{5} = Rainfall Intensity for 20\% Annual Exceedance Probability event of 5 minute duration (mm/hr)

 $A = Site Area (m^{2})$$

Site Storage Requirement

The Site Storage Requirement is calculated from the post development runoff generated from a 100 year Average Recurrence Interval rainfall event (1% Annual Exceedance Probability). The difference between the maximum post development flow considering this occurrence, and the permissable site discharge calculated above gives the site storage required in terms of detention.

2.2 Legal Point of Discharge (LPD)

The discharge points for stormwater on this development site confirmed the current existing pits located at Walkerville Terrace (Refer to survey plan for more info). Matter Consulting has investigated the best approach to guarantee the attainment of water quality standards and permissible site discharge goals.

Figure 3 – Legal Points of Discharge

2.3 Catchment Areas Breakdown

2.3.1 Pre-Development Area

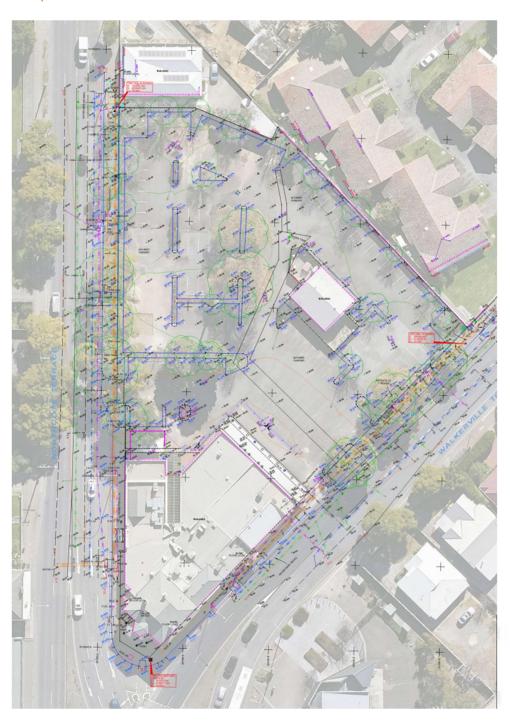


Figure 4 – Existing site areas

8

2.3.2 Post- Development Area

Figure 4-1 – Proposed site areas

MUSIC MODELLING:

The below image is a snapshot from the MUSIC modelling to ensure accurate run-off coeeficients are used in our detention volume calculation.

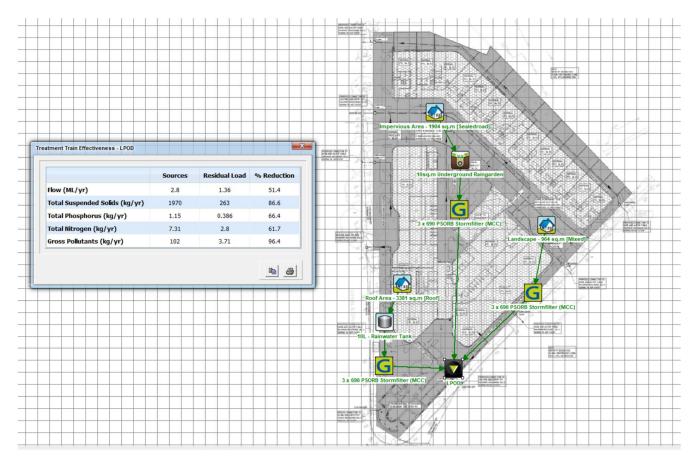


Figure 5 – MUSIC treatment train

Summary of Assumed Catchment Areas

Surface Type	Pre-Development	Post-Development	
	Area (m2)	Area (m2)	Coefficient of Runoff
Roof	1290	3381	1.0
Paving	4347	1904	0.9
Landscaping	612	964	0.3
Total	6249	6249	0.933

Figure 6 - Run-off area summary table

2.4 Detention Volume Calculation

Permissible site discharge calculations have been conducted in accordance with the design parameters.

On-site detention volume required has been calculated with the rational method and with the following parameters.

AEP Pre-development: 10% (1:10 Years)
 AEP Post-development: 1% (1:100 Years)
 Coefficient of Runoff Pre-Development: 0.933

- Catchment area combined: 6249 m2

Level 5/550 Bourke Street Melbourne VIC 3000 (03) 8692 7262

Location

Label: Not provided

Latitude: -34.9011 [Nearest grid cell: 34.9125 (S)] **Longitude:**138.6095 [Nearest grid cell: 138.6125

(E)

IFD Design Rainfall Depth (mm)

Issued: 04 December 2024

Rainfall depth for Durations, Exceedance per Year (EY), and Annual Exceedance Probabilities (AEP). FAQ for New ARR probability terminology.

T-1-1-	1	Chart	1	Coefficients	Unit: mm	- 3
Table		Chart		Coefficients	Ollic. IIIII	

		Annu	ial Exceed	lance Prob	ability (A	EP)						
Duration	63.2%	50%#	20%*	10%	5%	2%	1%					
5 min	4.17	4.75	6.78	8.33	10.0	12.5	14.6					
6 min	4.63	5.28	7.54	9.26	11.1	13.9	16.2					
10 min	6.04	6.90	9.88	12.1	14.6	18.2	21.2					
20 min	8.26	9.44	13.5	16.6	19.9	24.9	29.0					
30 min	9.73	11.1	15.9	19.5	23.4	29.2	34.1					
1 hour	12.6	14.3	20.4	25.0	30.0	37.4	43.8					
1.5 hour	14.5	16.5	23.4	28.6	34.3	42.7	50.0					
2 hour	16.1	18.2	25.7	31.4	37.6	46.8	54.6					
3 hour	18.4	20.9	29.3	35.7	42.6	52.8	61.4					
4.5 hour	21.1	23.8	33.2	40.4	48.0	59.2	68.6					
6 hour	23.2	26.1	36.3	44.0	52.2	64.0	73.9					
9 hour	26.3	29.7	41.0	49.5	58.4	71.1	81.6					
12 hour	28.7	32.4	44.6	53.6	63.0	76.3	87.2					
18 hour	32.4	36.4	49.8	59.6	69.7	83.7	95.1					
24 hour	35.1	39.4	53.6	63.9	74.5	89.0	101					
48 hour	42.0	46.9	62.8	74.2	85.7	101	113					
72 hour	46.2	51.4	68.1	79.8	91.6	107	119					

Note:

Figure 7 – BOM Rainfall Data used in analysis

[#] The 50% AEP IFD **does not** correspond to the 2 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 1.44 ARI.

^{*} The 20% AEP IFD **does not** correspond to the 5 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 4.48 ARI.

Location

Label: Not provided

Latitude: -34.9011 [Nearest grid cell: 34.9125 (S)]
Longitude: 138.6095 [Nearest grid cell: 138.6125

(E)]

IFD Design Rainfall Intensity (mm/h)

Issued: 04 December 2024

Rainfall intensity for Durations, Exceedance per Year (EY), and Annual Exceedance Probabilities (AEP). FAQ for New ARR probability terminology.

		Annu	ıal Exceed	lance Prol	bability (A	EP)	
Duration	63.2%	50%#	20%*	10%	5%	2%	1%
5 min	50.0	57.0	81.3	100.0	120	150	175
6 min	46.3	52.8	75.4	92.6	111	139	162
10 min	36.3	41.4	59.3	72.9	87.5	109	127
20 min	24.8	28.3	40.5	49.8	59.8	74.6	87.1
30 min	19.5	22.2	31.7	39.0	46.9	58.4	68.3
1 hour	12.6	14.3	20.4	25.0	30.0	37.4	43.8
1.5 hour	9.70	11.0	15.6	19.1	22.9	28.5	33.3
2 hour	8.03	9.11	12.8	15.7	18.8	23.4	27.3
3 hour	6.14	6.95	9.75	11.9	14.2	17.6	20.5
4.5 hour	4.69	5.29	7.39	8.98	10.7	13.2	15.2
6 hour	3.86	4.36	6.05	7.34	8.70	10.7	12.3
9 hour	2.92	3.30	4.56	5.50	6.49	7.90	9.07
12 hour	2.40	2.70	3.71	4.46	5.25	6.36	7.27
18 hour	1.80	2.02	2.77	3.31	3.87	4.65	5.28
24 hour	1.46	1.64	2.23	2.66	3.11	3.71	4.19
48 hour	0.874	0.976	1.31	1.54	1.78	2.10	2.35
72 hour	0.642	0.714	0.946	1.11	1.27	1.49	1.65

Note:

The 50% AEP IFD **does not** correspond to the 2 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 1.44 ARI.

Figure 7-1 – BOM Rainfall Data used in analysis

st The 20% AEP IFD **does not** correspond to the 5 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 4.48 ARI.

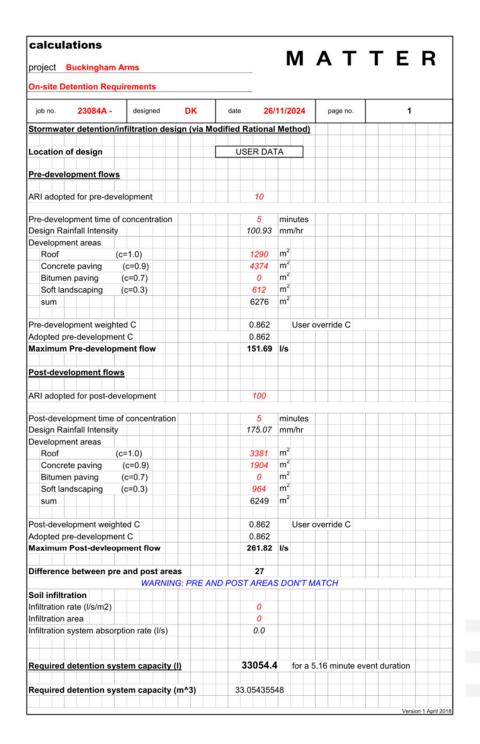
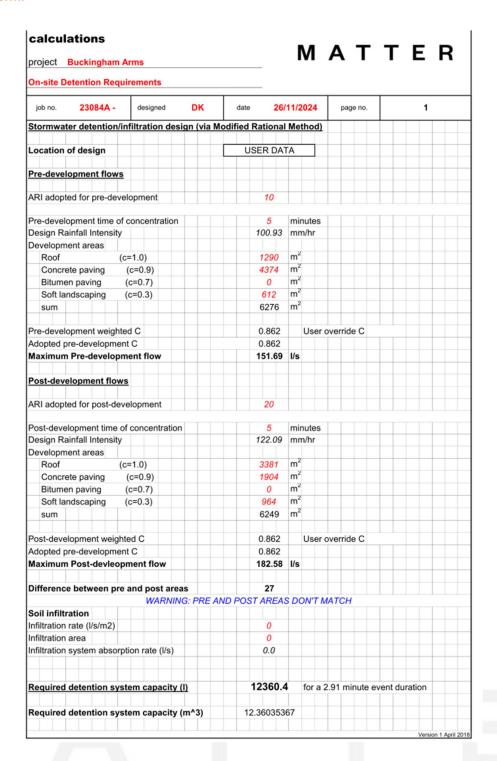

Copyright (commonwe	ealth of Aus	tralia 2016	Bureau of M	leteorology	(ABN 92 6	3 / 533 532
IFD Design	Rainfall Co	efficients					
Issued:	4-Dec-24						
Location La	abel:						
Requested	Latitude	-34.9011	Longitude	138.6095			
Nearest gri	Latitude	34.9125 (S	Longitude	138.6125 (E)		
Coefficient	63.20%	50%	20%	10%	5%	2%	1%
CO	0.24996	0.382061	0.738469	0.945254	1.128348	1.348594	1.503993
C1	0.883343	0.866472	0.844062	0.844567	0.852209	0.872201	0.89069
C2	-0.09017	-0.07057	-0.04592	-0.04816	-0.05897	-0.08499	-0.1086
C3	-0.00836	-0.01637	-0.02568	-0.02386	-0.01837	-0.00626	0.004501
C4	0.004477	0.005946	0.007487	0.006956	0.005719	0.003196	0.001003
C5	-0.00052	-0.00065	-0.00077	-0.00071	-0.00058	-0.00035	-0.00014
C6	1.98E-05	2.39E-05	2.74E-05	2.49E-05	2.03E-05	1.21E-05	5.23E-06

Figure 7-2 - Coefficient Data used in analysis

2.5 Legal Point of Discharge – DRAINS Calculation

Major Storm:


Level 5/550 Bourke Street Melbourne VIC 3000 (03) 8692 7262

	lations				М	АТТ	E R
project	Buckingh	nam Arms			• •••	<i>,</i>	
On-site D	Detention	Requirem	ents				
job no.	23084	A - de	esigned DK	date	26/11/2024	page no.	2
	6		. Anhin				
Iteration	frequency			Diffor	rence b/w	Described detention	
No.		100 year mm/hr	Post-development			Required detention	
0 0	(min) 5	175.069	flowrate (I/s) 261.82		ost flows (l/s) 10.13	volume (litres) 33039	
1	7.5	146.598	219.24		67.55	33039	
2	3.33333	203.917	304.96	_	53.27	30598	
3	2.5	223.437	334.15		82.46	27370	
4	2.91667	213.143	318.75		67.07	29237	
5	3.125	208.405	311.67	_	59.98	29997	
6	3.4375	201.76	301.73	_	50.05	30947	
7	3.69792	196.608	294.03	_	42.34	31582	
8	3.98438	191.305	286.10		34.41	32133	
9	4.25781	186.566	279.01	_	27.32	32527	
10	4.53776	182.01	272.20	_	20.51	32810	
11	4.81445	177.773	265.86		14.17	32981	
12	5.09277	173.755	259.85	_	08.16	33052	
13	5.37028	169.971	254.19	1	02.51	33029	
14	5.23153	171.837	256.98	1	05.30	33051	
15	5.16215	172.789	258.41	1	06.72	33054	
16	5.05809	174.244	260.58	1	08.90	33048	
17	5.11012	173.513	259.49	1	07.80	33053	
18	5.13613	173.15	258.95	1	07.26	33054	
19	5.17516	172.61	258.14	1	06.45	33054	
20	5.20768	172.163	257.47	1	05.78	33053	
21	5.19142	172.386	257.80	1	06.12	33054	
22	5.18329	172.498	257.97	1	06.28	33054	
23	5.17109	172.666	258.22	1	06.54	33054	
24	5.16093	172.806	258.43	1	06.75	33054	
25	5.14975	172.961	258.66	1	06.98	33054	
26	5.15534	172.884	258.55	1	06.86	33054	
27	5.15814	172.845	258.49	1	06.80	33054	
28	5.16233	172.787	258.40	1	06.72	33054	
29	5.16582	172.739	258.33	1	06.64	33054	
30	5.16407	172.763	258.37	1	06.68	33054	

Level 5/550 Bourke Street Melbourne VIC 3000 (03) 8692 7262

Minor Storm:

calcul	calculations MATTER									
project	Buckingh	am Arms				A 1 1				
On-site D	Detention I	Requirem	ents							
job no.	23084	A - de	esigned DK	date	26/11/2024	4 page no.	2			
,00	20004		Join Dit	00.0	20/11/202	page no.				
Intonoitu	frequency	, duration	tabla							
	Duration	20 year	Post-development	Diffo	rence b/w	Deguired detention				
No.		mm/hr	flowrate (I/s)		post flows (I/s)	Required detention				
0 0	(min) 5	122.088	182.58		30.90	volume (litres) 9269				
1	7.5	102.089	152.58		0.99	9269 445	+			
2	3.33333	142.241	212.72		61.04	12207				
3	2.5	155.801	212.72		81.31	12207				
4	2.91667	148.657	233.00		70.63	12197				
5	2.70833	152.132	227.51		75.83	12322				
6	2.70633	150.371	224.88	_	73.19	12322				
7	2.86458	149.508	223.59		71.90	12358				
8	2.94271	148.236	223.59		70.00	12359				
9	3.00781	147.195	220.13		68.44	12359				
10	2.97526	147.713	220.13		69.22	12357				
11	2.95898	147.713	221.29		69.61	12358				
12	2.93457	148.367	221.29	_	70.20	12360				
13	2.91423	148.697	222.38		70.69	12360				
14	2.89185	149.061	222.92		71.23	12360				
15	2.90304	148.879	222.92		70.96	12360				
16	2.90863	148.788	222.51		70.83	12360				
17	2.91702	148.651	222.31		70.62	12360				
18	2.91283	148.719	222.41		70.72	12360				
19	2.91492	148.685	222.36		70.67	12360				
20	2.91388	148.702	222.38	_	70.70	12360				
21	2.91335	148.711	222.40		70.71	12360				
22	2.91256	148.724	222.42	_	70.73	12360				
23	2.91191	148.734	222.43		70.75	12360				
24	2.91119	148.746	222.45		70.76	12360				
25	2.9105	148.757	222.47		70.78	12360				
26	2.91084	148.752	222.46		70.77	12360				
27	2.91102	148.749	222.45		70.77	12360				
28	2.91127	148.745	222.45		70.76	12360				
29	2.91114	148.747	222.45		70.76	12360				
30	2.91108	148.748	222.45		70.77	12360				

2.6 Controlled Site Discharge

2.6.1 Drainage Pipe to LPoD

Three existing pits to be nominated as legal point of discharges which outfall drains on site to be connected as per below sketch to limit discharge to the pre-development flow of 151.69 l/s.

Figure 8 – Legal point of discharge

Up to the 1% AEP event, the Surface Basin full while discharging at existing side entry pits as shown and marked on figure8 with flow of 151.69 l/s, matching the 10% AEP pre-development flow. Over the 1% AEP event, stormwater bypasses the system by overflowing the overland basin and discharging to the legal point of discharge.

2.7 Rainwater Tank

10kL rainwater harvesting and reuse is proposed for the development. It will reduce the overall volume of stormwater load going to the receiving water course. It is proposed to provide rainwater harvesting tanks (RWT's) to capture roof runoff for re-use as irrigation and toilet flushing etc. The use of rainwater tanks will allow for a reduction of TSS by the settling of particles over time and through the screening of water before it enters the tank. These tanks will be installed when the development is constructed.

One rainwater tank has been proposed by this office and modelled in MUSIC to reuse water for irrigation and toilet flushing respectively.

2.8 Other treatment devices

As illustrated in section 2.3.2, 10sq.m Raingarden, 3xJellyFish & GPT treatment pits will further treat stormwater to achieve the project's stormwater objectives. Refer to MUSIC result for a detailed analysis.

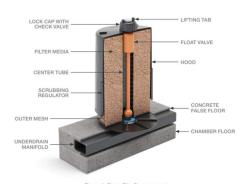


Figure 2: Example conceptual diagram of a StormFilter® system

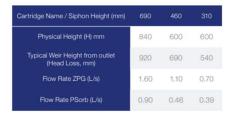


Table 1: StormFilter® cartridge details

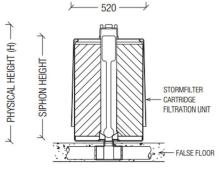


Figure 3: StormFilter® cartridge dimensions

MATTER CONSULTING STRUCTURAL ENGINEERS

Level 5/550 Bourke Street Melbourne VIC 3000 (03) 8692 7262

3 Summary

The entire subject site development has been considered in the calculation of the detention requirements. A 1 in 100-year, 5-minute duration event, gives a required capacity of **34kL** which the proposed solution provides across legal point of stormwater discharge.

In accordance with the Infrastructure Design Manual a MUSIC analysis has been carried out for this development. The treatment train effectiveness of the proposed treatment system is designed to fully achieve the stormwater discharge quality targets.

- Appendix

